
Programming with the Globus Toolkit GridFTP Client Library

William E. Allcock
Mathematics and Computer Science Division

Argonne National Laboratory

Extract: The Globus Toolkit GridFTP client library hides the developer from the complexities of
the protocol and makes client development relatively easy. It is, however, an asynchronous
programming model unfamiliar to many people.

Additional Resources

Globus Toolkit API Documentation
http://www.globus.org/developer/api-reference.html

Asynchronous Programming:

http://www-unix.globus.org/toolkit/docs/3.2/developer/globus-async.html

Full Example Code
To be hosted on the ClusterWorld web site

Introduction

GridFTP is a fast, efficient, secure, and robust protocol for data transfer. This protocol is in wide
use in Grid applications, primarily through an implementation available in the Globus Toolkit. The
Globus Toolkit provides a server, a scriptable command line interface client called globus-url-copy,
and a set of development libraries. While globus-url-copy will meet the needs of most data
movement tasks, at times custom code is the only solution. You may wish to enable your
application to access remote files stored behind a GridFTP server, or you may prefer to process the
data before local storage.

The Globus Toolkit provides two primary libraries for GridFTP: the control library and the client
library. The control library provides very low level primitives for command processing, parallel
stream (multiple TCP streams) I/O, and so forth. This library gives you extreme flexibility, but it
requires a deep understanding of the GridFTP protocol because you must implement the state
machine yourself. The client library is built on top of the control library and hides this complexity.
Each of the GridFTP operations (discussed below) represents a complete session. The protocol and

state machine are completely hidden. Here we introduce the use of the Globus GridFTP client
libraries; the control library is beyond the scope of this article.

Client Library Overview

The client library API is fairly straightforward, and the online API documentation is quite good.
Check out the resources sidebar for further information. The client library API consists of seven
basic categories of functions. Each of these categories is discussed below.

Activation/Deactivation: All modules in the Globus Toolkit require a call to the module
activation/deactivation. This initializes certain data structures and allocates/deallocates memory.
Reference counts are kept for each activation/deactivation.

Handle Management: A handle is equivalent to a file descriptor. It is the "name" of each
connection or session you establish. A handle is essentially the same as a control channel and
associated data channels.

Handle Attributes: Attributes are data structures that pass information that modify the behavior of
their associated ?object?. Attributes are never directly accessed. In all cases, functions are
provided that set the values or query their current values. Handle attributes are available related to
channel caching and plug-ins. Channel caching refers to holding the socket connections open after
an operation is complete and reusing them if possible. You can either cache all the connections or
cache them on a URL-by-URL basis. Plug-ins are functions that can be called when certain
predefined events occur. For instance, a debug plug-in provided with the Globus Toolkit is
triggered every time a command or response is sent over the wire and prints each command or
response to stdout, so that you can troubleshoot your session. Use of plug-ins is not covered in this
article.

Operation Attributes: Operation attributes are similar to handle attributes, but rather than
applying to an entire session, they apply only to a specific operation. Operation attributes include
the file type, the transfer mode, number of streams, TCP buffer size, and security options.

FTP Operations: FTP operations can be subdivided into two subcategories: remote file system
operations and data movement operations. The remote file system operations are fairly typical:
You can check existence of files and directories; make a directory; remove a directory; delete a file;
move a file; check the modification time, size, and checksum of a file; change permissions on a
file; and get directory listings. Note that chown (change the file ownership) is not provided
because it requires root privileges and the server runs as an unprivileged user for security reasons.

Two data movement commands are provided -- put (send data to a remote host) and get (retrieve
data from a remote host)-- and multiple variations on those two commands. The general syntax is
as follows:

globus_ftp_[partial|extended]_put|get|third_party_transfer

The extended variations allow the invocation of server-side processing routines, if present.
Typically, some sort of data reduction is involved, such as subsampling, to reduce the amount of
data transmitted over the network. Although the extended variants are not often used, in certain
circumstances they can be incredibly powerful. The partial variants add an offset and length to the
parameter list and allow a portion of the file to be retrieved. The third-party transfer variants invoke
a server-to-server transfer, rather than a client-to-server transfer. This requires a little explanation.

The GridFTP protocol, like FTP, is a split-channel protocol. Commands are sent over one socket
connection (the control channel) and data over another (the data channel). In a typical FTP client-
server transfer scenario (figure 1), both the control and data channels are opened between the client
and the server, and the client is involved in the data transfer. In a third-party transfer, however
(figure 2), the client opens two control channels -- one to the source server and one to the
destination server -- but the data channel is opened between the two servers and the client is not
involved in the actual movement of the data.

I will connect,
read foo from
local disk and
send it over the
socket
connection.

Client

Server Server Server

Client

You connect to
this port, then
read file foo from
disk and send it
over the socket
connection

You listen on a
port, tell me
which one, and
then wait for data
to arrive on that
socket and write
it to file foo.

data

Client Server Model

Figure 1

3rd Party Transfer Model

Figure 2

You listen on a
port, tell me
which one, and
then wait for data
to arrive on that
socket and write
it to file foo.

Reading and Writing Data: The FTP operation commands handle the protocol exchange
required. For many of the commands, such as making a directory, this is sufficient. No data
movement occurs, merely a success or failure response over the control channel. However, the data
movement commands also need to have code that actually drives the data movement. These
functions handle this. Note that they are asynchronous functions and that iteration is normally
handled through callbacks. In other words, the callback function called at the completion of a write
is normally a variation on "Are we at end of file? If not, register another write.

Restart Marker Handling: One of the significant improvements of GridFTP over FTP is its
robustness to failure. GridFTP has the writing server periodically send back restart markers, or
acknowledgments, of which blocks of bytes have been written. The helper functions ease the
handling and consolidation of these markers.

The Globus Toolkit Programming Model

We turn next to how the library functions are actually used. The fact that we use an asynchronous
programming model often seems strange to people developing C applications with the Globus
Toolkit, We briefly explain this model as we go through the basic steps required for using the
GridFTP client library. We examine code snippets and provide a small example of a whole file put.
An in-depth explanation is beyond the scope of this article; check the resource side bar for more
information.

Include headers: All code that makes calls to functions in the GridFTP client library must have the
following include:

#include “globus_ftp_client.h”

Module Activation/Initialization: In any Globus Toolkit C code, you must call the module
activate/deactivate for any module that you make direct calls to. The module will activate and
deactivate its own dependencies. For instance, Globus XIO, Globus GSI, and so forth used by the
Globus GridFTP client library will automatically be activated when you call activate on the client
library. However, if you also make calls directly to those modules -- for instance, you also use XIO
for doing the file IO -- then you need to call activate/deactivate on XIO as well. The rule is, if you
make a direct call to a module function, you must activate and deactivate. This is relatively simple:

 result = globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);

Handle Setup: Every function call is a completely encapsulated GridFTP session: a control
connection is formed, authentication is done, if necessary a data channel is established, the
necessary data is transferred, and then everything is torn down -- unless you turn on channel
caching. Basically, we recommend you always enable channel caching. It can result in a
substantial performance gain; and even in a simple program you will end up with at least two
connections, one to check the features the server supports (discussed below) and one to move the
data. If you check the size of the file or do other file system operations, each of them is also a
connection. Below we use the cache_all call. Most of the time, this will be all you need.
However, if you have a long running program that will access many different sites, you will need to
do explicit caching by URL or to cache all and implement some algorithm for periodically flushing
URLs from the cache, for instance a pool to limit the maximum number of connections and a
timeout to keep connections from hanging around indefinitely. See the online documentation for
descriptions of the other caching functions.

 globus_ftp_client_handleattr_init(&handle_attr);
 globus_ftp_client_handleattr_set_cache_all(GLOBUS_TRUE);
 globus_ftp_client_handle_init(&handle, &handle_attr);

Check Features: A good practice is to always verify that the server supports any features you
intend to exploit. Since the minimum implementation of a GridFTP server is basically standard
FTP with the gss security (RFC 2228), the server you are talking to may not support setting the
buffer size or parallelism. Checking for features comprises four steps. First, you call init. Second,
you call the features function, which sends the FTP FEAT command do the server, then parses the
response, and loads the structure with the results. Third, to access the results, you call
is_feature_supported listing the feature you are interested in; the features are an enumerated type.
Fourth, when you are finished, you call features_destroy to free the memory for the structure. As
mentioned above, checking features encapsulates an entire GridFTP session. Therefore you have to
specify a URL (all you need is the protocol, host, and port in this case) and a callback function.
Again, everything in the Globus Toolkit is asynchronous, so the call will return immediately, but
you have to wait for the callback to know that the structure is populated and you can access it. In
code it looks like this:

 result = globus_ftp_client_features_init(features);
 result = globus_ftp_client_feat(handle, url, operation_attr, features,
 complete_cb, callback_args);
 while(!done)
 {
 globus_cond_wait(&cond, &lock);
 }
 result = globus_ftp_client_is_feature_supported(features, answer,
 GLOBUS_FTP_CLIENT_FEATURE_PARALLELISM);

where the complete callback would simply set done to TRUE. Note that answer can be
GLOBUS_FTP_CLIENT_TRUE, FALSE, or MAYBE. MAYBE means that particular feature was
not probed; it does not necessarily indicate an error.

Set Operation Attributes: Once you know what features are supported by the servers you are
using, you can configure any necessary attributes. The file system operations often may not use
attributes, but the data movement operations often will. For a data movement operation, if you
don?t specify any attributes, the default will be standard RFC 959 stream mode (normal FTP),
using RFC 2228 gss authentication via the Grid Security Infrastructure (GSI), an encrypted control
channel and an authenticated data channel. We will briefly discuss the various attributes and then
show a coding example of how they are used.

The operation attributes can be separated into two rough categories: data movement options and
security options. All the function calls have the same form:

globus_ftp_client_operationattr_[set|get]_?attribute?.

The set variant changes the value of the attribute, and the get variant returns the current value of the
attribute. The data movement attributes are as follows:

type: This sets the file type to either ASCII or Image (binary).

mode: GridFTP supports two modes: stream (MODE S) and extended block (MODE E). Stream
mode is what a normal FTP server uses; the file is moved by sending the bytes as an ordered
sequence of bytes over the wire. Extended block mode is a GridFTP extension. This mode sends
the data in blocks with eight bits of flags and a 64-bit offset and length prepended. This allows out-
of-order reception of the data because the offset in the transmission is specified. With out-of-order
data possible, we can now exploit sending the data over multiple paths. In the current version of
the server, we call this "parallelism." It involves only a single source and destination network
endpoint (IP address or NIC) but has multiple TCP streams. Version 4 of the Globus Toolkit will
also have a striping capability that will allow multiple endpoints, such as a cluster with a shared,
parallel file system. Parallelism provides better performance by basically working around TCP
limitations. Striping, when available, will allow users to break the single host performance
bottleneck on very large files.

parallelism: This specifies the number of TCP streams that should be opened between each
network endpoint (see the discussion of parallelism above).

tcp_buffer: This is another important performance attribute. If the TCP buffer size is not
sufficiently large, it will limit your performance. For an explanation of why that is so, please see
last month's "On the Grid" article on GridFTP performance tuning.

The remaining operation attributes relate to security. Security is a critical aspect of any Grid
application. GridFTP provides a wide range of security options. Both the authorization and the
protection level may be set on the control channel and the data channel. Username/Password
authentication is available only if the protocol specified is FTP. Since the username and password
are sent in clear text, this is an extremely bad idea. GridFTP (which uses the gsiftp protocol
specifier for historical reasons), offers three mode of authentication through gss: NONE, SELF, and
SUBJECT. NONE means no authentication is performed, SELF indicates that the server should be
running under your credentials, and SUBJECT allows you to specify the expected subject name
that the server will authenticate with. The default mode has the server present a subject name
containing the hostname on which it is running.

Protection relates to verification of the data. Standard security measures define four levels of
protection: CLEAR, SAFE, CONFIDENTIAL, and PRIVATE. CLEAR indicates no protection of
any kind; SAFE indicates that the data is integrity checked (i.e., a checksum is performed);
CONFIDENTIAL means that the data is encrypted; and PRIVATE means that the data is both
encrypted and integrity checked. The definitions above are from RFC 2228, the PROT command.
However, we do not support the CONFIDENTIAL mode; it is actually treated as PRIVATE. In
other words, you cannot encrypt without also getting integrity checking. The reason stems from a
limitation in our underlying libraries (SSL).

For example, if you wish to set MODE E (required for parallelism), the parallelism to four streams,
and your TCP buffer size to 2 MB per stream (not a bad group of rule-of-thumb defaults for gigabit
transfers across the United States), the code would look like this:

 globus_ftp_client_operationattr_init(&attr);
 parallelism.mode = GLOBUS_FTP_CONTROL_PARALLELISM_FIXED;
 parallelism.fixed.size = 4;

 globus_ftp_client_operationattr_set_mode(
 &attr,
 GLOBUS_FTP_CONTROL_MODE_EXTENDED_BLOCK);
 globus_ftp_client_operationattr_set_parallelism(&attr, ¶llelism);

Execute the Operation: We are now ready to move some data. The asynchronous nature of the
Globus Toolkit comes into play here again. To start the protocol exchange, you simply say put:

result = globus_ftp_client_put
 (&handle, /* the handle we initialized above */
 dst, /* the URL of the destination */
 &attr, /* the operation attribute structure we just filled */
 GLOBUS_NULL, /* Restart Markers, if any */
 done_cb, /* callback when the transfer is complete */
 0); /* an optional argument to the callback */

However, all you have done is initiated the control channel protocol exchange. This command
sends all of the necessary command to the server; and since this is a put, the server waits for data to
come down the data channel. However, since this is a client-server interaction and you are the
client, you have to actually read the data off the disk and send it down the wire to the waiting
server. This process is handled by the register_read or in this case, the register_write command.
Once again, the register_write is asynchronous, so it returns immediately. One of the parameters to
register_write is the function (callback) to call when it has completed writing the data. This
callback normally checks to see whether the file is at EOF; if not, it reads another block and calls
register_write again. The process continues until the entire file has been moved.

A few notes are in order here. First, it is allowed -- and, in fact, necessary for performance -- to
have multiple register_write calls outstanding. As a rule of thumb, we recommend 2 * the number
of streams you are using. This helps ensure that a stream is never sitting idle. Second, since this is
asynchronous, there is no guarantee of the order of arrival of the data at the server; hence, you
should never have logic depending on the order. Third, shared values, such as the current offset in
the file, will need to have appropriate mutexes places around them to avoid data corruption.

globus_ftp_client_register_write(
 handle, /* the handle to our session */
 buffer, /* the data to send to the server */
 length, /* length of the data */
 global_offset, /* offset in the file where this should be written */
 feof(fd), /* are we at EOF? */
 data_cb, /* function to call when the write is complete */
 GLOBUS_NULL); /* argument to the callback */

Module Deactivation and Cleanup: After the work is done, cleanup remains. Don't forget to free
any buffers that you allocated or were allocated for you by calls such as globus_error_get() and
globus_print_friendly(). Also, destroy anything that you initialized, and then deactivate the
module:

globus_ftp_client_operationattr_destroy(operation_attr);
globus_ftp_client_handleattr_destroy(handle_attr);
globus_ftp_client_handle_destroy(handle);
globus_module_deactivate(GLOBUS_FTP_CLIENT_MODULE);

Or, if you are done with all your Globus Toolkit code and you want a short cut, you can call

globus_module_deactivate_all();

That's it. You can now move data quickly and efficiently from a broad range of resources on the
Grid. Besides the code snippets included inline, there is also a complete, though very simple,
example that can be downloaded. See the resources sidebar for details.

Summary

We have provided a brief introduction to the Globus Toolkit GridFTP client library. This library
provides very high level commands that implement the protocol without requiring the developer to
have an in-depth knowledge of the protocol. The toolkit mainly provides remote file system
commands and data movement commands, as well as a range of other helper functions to assist in
executing these operations. In Grid environments, GridFTP is the de facto standard for data access.
A significant number of data sets are made accessible via a GridFTP protocol-compliant server. By
adding support for the GridFTP protocol to your application, you gain access to these data sets.
The Globus Toolkit GridFTP client allows you to do this with relative ease. The information
presented here is intended to familiarize you with the asynchronous programming model that the
GridFTP client library uses.

Acknowledgment

This work was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under Contract
W-31-109-ENG-38, by the National Science Foundation, by Los Alamos National
Laboratory and by IBM.

Copyright (not meant to be published with article)
The submitted manuscript has been created by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

